Animal welfare is integral to sustainable livestock production, and pasture access for cattle is known to enhance welfare. Despite positive welfare impacts, high labour requirements hinder the adoption of sustainable grazing practices such as rotational stocking management. Virtual fencing (VF) is an innovative technology for simplified, less laborious grazing management and remote animal monitoring, potentially facilitating the expansion of sustainable livestock production.
View Article and Find Full Text PDFVirtual fencing (VF) is a modern fencing technology that requires the animal to wear a device (e.g., a collar) that emits acoustic signals to replace the visual cue of traditional physical fences (PF) and, if necessary, mild electric signals.
View Article and Find Full Text PDFVirtual fencing (VF) represents a way to simplify traditional pasture management with its high labour and cost requirements for fencing and to make better use of the 'beneficial' agronomic and ecological effects of livestock grazing. In this study, the VF technology (® Nofence, AS, Batnfjordsøra Norway) was used with Fleckvieh heifers to investigate possible welfare impacts on the animals compared to conventionally fenced animals when they were trained to respond correctly to the system. The Nofence® collars (attached to the neck of the heifers) send acoustic signals as a warning when the animals approach the VF line, which was set up by GPS coordinates within the Nofence®-App, followed by an electric pulse when they do not stop or return.
View Article and Find Full Text PDFEutrophication through atmospheric nutrient deposition is threatening the biodiversity of semi-natural habitats characterized by low nutrient availability. Accordingly, local management measures aiming at open habitat conservation need to maintain habitat-specific nutrient conditions despite atmospheric inputs. Grazing by wild herbivores, such as red deer (Cervus elaphus), has been proposed as an alternative to mechanical or livestock-based measures for preserving open habitats.
View Article and Find Full Text PDFAgricultural intensification drives biodiversity loss and shapes farmers' profit, but the role of legacy effects and detailed quantification of ecological-economic trade-offs are largely unknown. In Europe during the 1950s, the Eastern communist bloc switched to large-scale farming by forced collectivization of small farms, while the West kept small-scale private farming. Here we show that large-scale agriculture in East Germany reduced biodiversity, which has been maintained in West Germany due to >70% longer field edges than those in the East.
View Article and Find Full Text PDF