Computation in neural circuits relies on the judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this limits our understanding of the mechanistic basis of many important computations.
View Article and Find Full Text PDFAdaptation is a universal aspect of neural systems that changes circuit computations to match prevailing inputs. These changes facilitate efficient encoding of sensory inputs while avoiding saturation. Conventional artificial neural networks (ANNs) have limited adaptive capabilities, hindering their ability to reliably predict neural output under dynamic input conditions.
View Article and Find Full Text PDFFront Ophthalmol (Lausanne)
July 2023
Linking the activity of neurons, circuits and synapses to human behavior is a fundamental goal of neuroscience. Meeting this goal is challenging, in part because behavior, particularly perception, often masks the complexity of the underlying neural circuits, and in part because of the significant behavioral differences between primates and animals like mice and flies in which genetic manipulations are relatively common. Here we relate circuit-level processing of rod and cone signals in the non-human primate retina to a known break in the normal seamlessness of human vision - a surprising inability to see high contrast flickering lights under specific conditions.
View Article and Find Full Text PDF