Nanomaterials (Basel)
February 2023
Due to global environmental concerns related to climate change, the need to improve the service life of structures and infrastructures is imminently urgent. Structural elements typically suffer service life reductions, leading to poor environmental sustainability and high maintenance costs. Graphene oxide nanosheets (GONSs) effectively dispersed in a cement matrix can promote hydration, refine the microstructure and improve interfacial bonding, leading to enhanced building materials' performance, including mechanical strength and transport properties.
View Article and Find Full Text PDFThe increase in concrete structures' durability is a milestone to improve the sustainability of buildings and infrastructures. In order to ensure a prolonged service life, it is necessary to detect the deterioration of materials by means of monitoring systems aimed at evaluating not only the penetration of aggressive substances into concrete but also the corrosion of carbon-steel reinforcement. Therefore, proper data collection makes it possible to plan suitable restoration works which can be carried out with traditional or innovative techniques and materials.
View Article and Find Full Text PDFThe impact of extra-low dosage (0.01% by weight of cement) Graphene Oxide (GO) on the properties of fresh and hardened nanocomposites was assessed. The use of a minimum amount of 2-D nanofiller would minimize costs and sustainability issues, therefore encouraging the market uptake of nanoengineered cement-based materials.
View Article and Find Full Text PDFZinc oxide (ZnO) nanoparticles were synthesized on diatomite (DE) surface by a low temperature sol gel technique, starting from zinc acetate dihydrate (Zn(CHCOO) · 2HO) solution in water/ethyl alcohol, in presence of triethanolamine (TEA) with functions of Zn chelating agent, catalyst and mediator of nanoparticle growth on DE surface. Microstructural features were investigated by field emission scanning electron microscopy and x-ray diffraction. ZnO crystalline nanoparticles, well distributed both on the surface and into the porous architecture of diatomite, were obtained just after the synthesis carried out at 80 °C without the need of calcination treatments.
View Article and Find Full Text PDF