Publications by authors named "F R Jensen"

Heligmosomoides polygyrus co-infection is reported to have protective antiviral effects against pulmonary viral infections. To investigate a potential underlying mechanism, we infected C57BL/6 mice with H. polygyrus larvae for two weeks.

View Article and Find Full Text PDF

Pathological tau spreads throughout the brain along neuronal connections in Alzheimer's disease (AD), but the mechanisms that underlie this process are poorly understood. Given the high incidence and deleterious consequences of epileptiform activity in AD, we hypothesized neuronal hyperactivity and seizures are key factors in tau spread. To examine these interactions, we created a novel mouse model involving the cross of targeted recombination in active populations (TRAP) mice and the 5 times familial AD (5XFAD; 5X-TRAP) model allowing for the permanent fluorescent labelling of neuronal activity.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on detecting multijet signatures from proton-proton collisions at a high energy of 13 TeV, analyzing a dataset totaling 128 fb^{-1}.
  • A special data scouting method is utilized to pick out events with low combined momentum in jets.
  • This research is pioneering in its investigation of electroweak particle production in R-parity violating supersymmetric models, particularly examining hadronically decaying mass-degenerate higgsinos, and it broadens the limits on the existence of R-parity violating top squarks and gluinos.
View Article and Find Full Text PDF

The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138  fb^{-1} of proton-proton collision data at sqrt[s]=13  TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics.

View Article and Find Full Text PDF

We describe an efficient implementation of cluster perturbation and Møller-Plesset Lagrangian energy series through the fifth order that targets the coupled cluster singles and doubles energy utilizing the resolution of the identity approximation. We illustrate the computational performance of the implementation by performing ground state energy calculations on systems with up to 1200 basis functions using a single node and by comparison to conventional coupled cluster singles and doubles calculations. We further show that our hybrid message passing interface/open multiprocessing parallel implementation that also utilizes graphical processing units can be used to obtain fifth order energies on systems with almost 1200 basis functions with a 90 min "time to solution" running on Frontier at Oak Ridge National Laboratory.

View Article and Find Full Text PDF