This review systematically describes the application of mouse models in studying cutaneous T-cell lymphoma (CTCL), a complex hematological neoplasm. It highlights the diverse research approaches essential for understanding CTCL's intricate pathogenesis and evaluating potential treatments. The review categorizes various mouse models, including xenograft, syngeneic transplantation, and genetically engineered mouse models (GEMMs), emphasizing their contributions to understanding tumor-host interactions, gene functions, and studies on drug efficacy in CTCL.
View Article and Find Full Text PDFRecent detailed genomic analysis of mycosis fungoides (MF) identified suppressor of cytokine signaling 1 (SOCS1), an inhibitor of JAK/STAT signaling, as one of the frequently deleted tumor suppressors in MF, and one-copy deletion of SOCS1 was confirmed in early-stage MF lesions. To better understand the functional role of SOCS1 in the genesis of MF, we used a genetically engineered mouse model emulating heterozygous SOCS1 loss in skin resident CD4 T cells. In these mice an experimentally induced contact-allergic reaction was maintained for 20 weeks.
View Article and Find Full Text PDFIntroduction: Mycosis fungoides (MF), the most common type of Cutaneous T cell Lymphoma (CTCL), is characterized by an inflamed skin intermixed with proliferating malignant mature skin-homing CD4+ T cells. Detailed genomic analyses of MF skin biopsies revealed several candidate genes possibly involved in genesis of these tumors and/or potential targets for therapy. These studies showed, in addition to common loss of cell cycle regulator CDKN2A, activation of several oncogenic pathways, most prominently and consistently involving JAK/STAT signaling.
View Article and Find Full Text PDFHuman dermis can be morphologically divided into the upper papillary and lower reticular dermis. Previously, we demonstrated that papillary (PFs) and reticular (RFs) fibroblasts show distinct morphology and gene expression profiles. Moreover, they differently affect tumor invasion and epithelial-to-mesenchymal transition (EMT) in in vitro 3D-organotypic cultures of cutaneous squamous cell carcinoma (cSCC).
View Article and Find Full Text PDF