Publications by authors named "F R Arteaga-Sierra"

We present a novel long-range surface plasmon polariton (LRSPP) device consisting of a suspended dielectric matrix in which an electrically active, millimeter-long metallic waveguide is embedded. We show that, by opening an air gap under the lower cladding, the influence of the substrate is suppressed and the symmetry of the thermo-optical distribution around the LRSPP waveguide is preserved over extended ranges of applied electrical current with minimal optical losses. Experimental results show that, compared to a standard nonsuspended structure, our device allows either the induction of a phase change that is three times larger, for a fixed electrical power, or, equivalently, a scaling down of the device to one-tenth of its original length, for a fixed phase change.

View Article and Find Full Text PDF

We study numerically the formation of cascading solitons when femtosecond optical pulses are launched into a fiber amplifier with less energy than required to form a soliton of equal duration. As the pulse is amplified, cascaded fundamental solitons are created at different distances, without soliton fission, as each fundamental soliton moves outside the gain bandwidth through the Raman-induced spectral shifts. As a result, each input pulse creates multiple, temporally separated, ultrashort pulses of different wavelengths at the amplifier output.

View Article and Find Full Text PDF

We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power.

View Article and Find Full Text PDF

We propose, by means of numerical simulations, a simple method to design a non-uniform standard single mode fiber to generate spectral broadening in the form of "ad-hoc" chosen peaks from dispersive waves. The controlled multi-peak generation is possible by an on/off switch of Cherenkov radiation, achieved by tailoring the fiber dispersion when decreasing the cladding diameter by segments. The interplay between the fiber dispersion and the soliton self-frequency shift results in discrete peaks of efficiently emitted Cherenkov radiation from low order solitons, despite the small amount of energy contained in a pulse.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionakfkgje0jdr7k1j3q1339dsqki91s0v3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once