Publications by authors named "F Poy"

Bromodomains are acetyllysine recognition domains present in a variety of human proteins. Bromodomains also bind small molecules that compete with acetyllysine, and therefore bromodomains have been targets for drug discovery efforts. Highly potent and selective ligands with good cellular permeability have been proposed as chemical probes for use in exploring the functions of many of the bromodomain proteins.

View Article and Find Full Text PDF

The histone acetyltransferases, CREB binding protein (CBP) and EP300, are master transcriptional co-regulators that have been implicated in numerous diseases, such as cancer, inflammatory disorders, and neurodegeneration. A novel, highly potent, orally bioavailable EP300/CBP histone acetyltransferase (HAT) inhibitor, CPI-1612 or , was developed from the lead compound . Replacement of the indole scaffold of with the aminopyridine scaffold of led to improvements in potency, solubility, and bioavailability.

View Article and Find Full Text PDF
Article Synopsis
  • EP300 and CBP are important enzymes that modify proteins and play a key role in regulating gene expression, and their dysfunction is linked to diseases like cancer.* -
  • Researchers tested 191,000 compounds to find inhibitors of EP300/CBP, identifying 18 promising compounds which led to the discovery of three new classes of inhibitors.* -
  • The study culminated in creating a new type of oral medication that inhibits these enzymes effectively in living organisms, providing insights for future drug development.*
View Article and Find Full Text PDF

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the dynamic and reversible acetylation of proteins, an epigenetic regulatory mechanism associated with multiple cancers. Indeed, HDAC inhibitors are already approved in the clinic. The HAT paralogs p300 and CREB-binding protein (CBP) have been implicated in human pathological conditions including several hematological malignancies and androgen receptor-positive prostate cancer.

View Article and Find Full Text PDF

The biological functions of the dual bromodomains of human transcription-initiation-factor TFIID subunit 1 (TAF1(1,2)) remain unknown, although TAF1 has been identified as a potential target for oncology research. Here, we describe the discovery of a potent and selective in vitro tool compound for TAF1(2), starting from a previously reported lead. A cocrystal structure of lead compound 2 bound to TAF1(2) enabled structure-based design and structure-activity-relationship studies that ultimately led to our in vitro tool compound, 27 (GNE-371).

View Article and Find Full Text PDF