Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.
View Article and Find Full Text PDFThe stability of metal-organic frameworks (MOFs) in the presence of water is crucial for a wide range of applications, including the production of freshwater, desiccation, humidity control, heat pumps/chillers and capture and separation of gases. In particular, their stability under steam flow is essential since most industrial streams contain water vapor. Nevertheless, to the best of our knowledge, the stability under steam flow of Zr-based MOFs, which are among the most widely studied MOFs, has not been investigated so far.
View Article and Find Full Text PDFA green synthesis of UiO-66-NH embedded in chitosan and deposited on textiles has been investigated for the degradation of chemical warfare agents. This method requires no heating or use of toxic solvents. The composite synthesized presents an interesting efficiency in detoxifying common simulants of chemical warfare agents, such as DMNP.
View Article and Find Full Text PDFThe Zr-based Metal Organic Framework (MOF) UiO-66(Zr) is widely employed owing to its good thermal and chemical stabilities. Although the long-range structure of this MOF is preserved in the presence of water during several days, little is known about the formation of defects, which cannot be detected using diffraction techniques. We apply here O solid-state NMR spectroscopy at 18.
View Article and Find Full Text PDFAmorphous lithium phosphorus oxynitrides (LiPON), prepared by reactive magnetron sputtering, have become the electrolytes of choice for all-solid-state thin film microbatteries since its discovery in early 1990s. Nevertheless, there is still a lack of understanding of their atomic-level structure and its influence on ionic conductivity. Solid-state NMR spectroscopy represents a promising technique to determine the atomic-level structure of LiPON glasses but is challenging owing to its low sensitivity in the case of thin film materials.
View Article and Find Full Text PDF