Publications by authors named "F Pollastro"

Although Cannabis sativa L. is well known for being prolific in phytocannabinoids, their biosynthetic modular mechanism is ruled by a main enzyme: the geranyltransferase able to pursue the C-isoprenylation of olivetolic acid with the geranyldiphosphate. However, the existence of more than 160 meroterpenoids can be partially explained by a side degree of promiscuity of the geranyltransferase itself, able to recognise different substrate than the ordinary ones.

View Article and Find Full Text PDF

Neurological disorders such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and schizophrenia are associated with altered neuronal excitability, resulting from dysfunctions in the molecular architecture and physiological regulation of ion channels and synaptic transmission. Ion channels and synapses are regarded as suitable therapeutic targets in modern pharmacology. Cannabinoids have received great attention as an original therapeutic approach for their effects on human health due to their ability to modulate the neurotransmitter release through interaction with the endocannabinoid system.

View Article and Find Full Text PDF

Bitter taste receptors (TAS2Rs) expressed in extraoral tissues represent a whole-body sensory system, whose role and mechanisms could be of interest for the identification of new therapeutic targets. It is known that TAS2R46s in pre-contracted airway smooth muscle cells increase mitochondrial calcium uptake, leading to bronchodilation, and that several SNPs have been identified in its gene sequence. There are very few reports on the structure-function analysis of TAS2Rs.

View Article and Find Full Text PDF

Oxidative stress can damage neuronal cells, greatly contributing to neurodegenerative diseases (NDs). In this study, the protective activity of arzanol, a natural prenylated α-pyrone-phloroglucinol heterodimer, was evaluated against the HO-induced oxidative damage in trans-retinoic acid-differentiated (neuron-like) human SH-SY5Y cells, widely used as a neuronal cell model of neurological disorders. The pre-incubation (for 2 and 24 h) with arzanol (5, 10, and 25 μM) significantly preserved differentiated SH-SY5Y cells from cytotoxicity (MTT assay) and morphological changes induced by 0.

View Article and Find Full Text PDF

Bitter taste receptors (TAS2Rs) are not only responsible for taste perception in the oral cavity, but are spread throughout the body, generating a widespread chemosensory system. In humans, 25 subtypes have been identified and are differentially expressed in tissues and organs, including in the immune system. In fact, several TAS2R subtypes have been detected in neutrophils, lymphocytes, B and T cells, NK cells, and monocytes/macrophages, in which they regulate various protective functions of the innate immune system.

View Article and Find Full Text PDF