The performance of hernia treatment could benefit from more extensive knowledge of the mechanical behavior of the abdominal wall in a healthy state. To supply this knowledge, the antero-lateral abdominal wall was characterized in vivo on 11 healthy volunteers during 4 activities: rest, pullback loading, abdominal breathing and the "Valsalva maneuver". The elasticity of the abdominal muscles (rectus abdominis, obliquus externus, obliquus internus and transversus abdominis) was assessed using ultrasound shear wave elastography.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2014
The design of meshes for the treatment of incisional hernias could benefit from better knowledge of the mechanical response of the abdominal wall and how this response is affected by the implant. The aim of this study was to characterise the mechanical behaviour of the human abdominal wall. Abdominal walls were tested ex vivo in three states: intact, after creation of a defect simulating an incisional hernia, and after reparation with a mesh implanted intraperitonally.
View Article and Find Full Text PDFBetter mechanical knowledge of the abdominal wall is requested to further develop and validate numerical models. The aim of this study was to characterize the passive behaviour of the abdominal wall under three configurations: intact, after creating a defect simulating an incisional hernia, and after a repair with a mesh implanted intraperitonally. For each configuration, controlled boundary conditions were applied (air pressure and then contact loading) to the abdominal wall.
View Article and Find Full Text PDF