Groundwater constitutes the primary source of fresh water for >1.2 billion people living in coastal zones. However, the threat of seawater intrusion is widespread in coastal aquifers mainly due to overexploitation of groundwater.
View Article and Find Full Text PDFManaged Aquifer Recharge is a wide-spread well-established groundwater engineering method which is largely seen as sound and sustainable solution to water scarcity hydrologically sensitive areas, such as the Circum Mediterranean. The process of site selection for the installation of a MAR facility is of paramount importance for the feasibility and effectiveness of the project itself, especially when the facility will include the use of waters of impaired quality as a recharge source, as in the case of Soil-Aquifer-Treatment systems. The main objective of this study is to present the developed framework of a multi-criteria Decision Support System (DSS) that integrates within a dynamic platform the main groundwater engineering parameters associated with MAR applications together with the general geographical features which determine the effectiveness of such a project.
View Article and Find Full Text PDFThe aim of this study was to determine the extent and geometrical characteristics of seawater intrusion in the coastal aquifer of the eastern Thermaikos Gulf, Greece. Hydrochemical data and geoelectrical measurements were combined and supplemented to determine the hydrochemical regime of the study site in regard to seawater phenomena. Chemical analysis of groundwater was performed in 126 boreholes and fifteen electrical resistivity tomographies (ERT) were measured, whereas in two sites the ERT measurements were repeated following the wet season.
View Article and Find Full Text PDFIndicator-based approaches are often used to monitor land degradation and desertification from the global to the very local scale. However, there is still little agreement on which indicators may best reflect both status and trends of these phenomena. In this study, various processes of land degradation and desertification have been analyzed in 17 study sites around the world using a wide set of biophysical and socioeconomic indicators.
View Article and Find Full Text PDFAn approach to derive relationships for defining land degradation and desertification risk and developing appropriate tools for assessing the effectiveness of the various land management practices using indicators is presented in the present paper. In order to investigate which indicators are most effective in assessing the level of desertification risk, a total of 70 candidate indicators was selected providing information for the biophysical environment, socio-economic conditions, and land management characteristics. The indicators were defined in 1,672 field sites located in 17 study areas in the Mediterranean region, Eastern Europe, Latin America, Africa, and Asia.
View Article and Find Full Text PDF