In vitro standard methods are available and accepted worldwide to assess UVA protection of sunscreen products. Though, harmonisation of methods has made progress in the last decade, still two differing methods - one by FDA the other by ISO - are in use. In a multicentre study including 9 centres in Germany, 4 different commercial sunscreen products were assessed using both methods to discover their similarities and differences.
View Article and Find Full Text PDFModern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals.
View Article and Find Full Text PDFIn the past, several attempts have been made to develop in vitro methods for determining protection against UV radiation. To date however, there is no broadly accepted method. Various known and unknown parameters influence the transmission measurements of scattering films, such as the multifaceted compositions of sunscreens, the technical limitations of measurement devices as well as the difficulty to apply very thin films of sunscreen in a reproducible manner throughout different laboratories.
View Article and Find Full Text PDFIn order to help clarify the controversially discussed dermal uptake properties of micronized titanium dioxide (TiO _ 2), we conducted extensive in vitro dermal absorption studies with 'Franz-type' diffusion cells on excised porcine skin. After biopsies and chemical fixation, the overall localization of TiO _ 2 in the skin was analyzed by means of transmission electron microscopy (TEM). The lateral and vertical distribution of TiO _ 2 within the stratum corneum (SC) was investigated by tape stripping and subsequent scanning electron microscopy (SEM) in combination with energy dispersive X-ray analysis (EDXA).
View Article and Find Full Text PDFIt is often debated that the protection against solar-induced erythema under real conditions is dependent upon the amount of sunscreen applied. It is believed that when too little is applied a lower sun protection than indicated on the label will result. The aim of this study was to quantify this effect.
View Article and Find Full Text PDF