EF-P is a translation factor that facilitates the formation of peptide bonds between consecutive prolines. Using FRET between EF-P and ribosomal protein bL33, we studied dynamics and specificity of EF-P binding to the ribosome. Our findings reveal that EF-P rapidly scans for a free E site and can bind to any ribosome containing a P-site tRNA, regardless of the ribosome's functional state.
View Article and Find Full Text PDFThe interferon-induced host cell protein Shiftless (SFL) inhibits -1 programmed ribosomal frameshifting (-1PRF) required for the expression of HIV-1 Gal-Pol and the formation of infectious HIV-1 particles. However, the specific regions in SFL required for antiviral activity and the mechanism by which SFL inhibits -1PRF remain unclear. Employing alanine scanning mutagenesis, we found that basic amino acids in the predicted zinc ribbon motif of SFL are essential for the suppression of Gag-Pol expression but dispensable for anti-HIV-1 activity.
View Article and Find Full Text PDFElongation factor P (EF-P) and its eukaryotic homolog eIF5A are auxiliary translation factors that facilitate peptide bond formation when several sequential proline (Pro) residues are incorporated into the nascent chain. EF-P and eIF5A bind to the exit (E) site of the ribosome and contribute to favorable entropy of the reaction by stabilizing tRNA binding in the peptidyl transferase center of the ribosome. In most organisms, EF-P and eIF5A carry a posttranslational modification that is crucial for catalysis.
View Article and Find Full Text PDFIn each round of translation elongation, the ribosome translocates along the mRNA by precisely one codon. Translocation is promoted by elongation factor G (EF-G) in bacteria (eEF2 in eukaryotes) and entails a number of precisely-timed large-scale structural rearrangements. As a rule, the movements of the ribosome, tRNAs, mRNA and EF-G are orchestrated to maintain the exact codon-wise step size.
View Article and Find Full Text PDF