Metastatic breast cancer (MBC) is the leading cause of cancer death in women due to recurrence and resistance to conventional therapies. Thus, MBC represents an important unmet clinical need for new treatments. In this paper we generated a virus-like particle (VLP)-based vaccine (AX09) to inhibit de novo metastasis formation and ultimately prolong the survival of patients with MBC.
View Article and Find Full Text PDFVirus-like particles (VLP) spontaneously assemble from viral structural proteins. They are naturally biocompatible and non-infectious. VLP can serve as a platform for many potential vaccine epitopes, display them in a dense repeating array, and elicit antibodies against non-immunogenic substances, including tumor-associated self-antigens.
View Article and Find Full Text PDFTumor relapse and metastatic spreading act as major hindrances to achieve complete cure of breast cancer. Evidence suggests that cancer stem cells (CSC) would function as a reservoir for the local and distant recurrence of the disease, due to their resistance to radio- and chemotherapy and their ability to regenerate the tumor. Therefore, the identification of appropriate molecular targets expressed by CSC may be critical in the development of more effective therapies.
View Article and Find Full Text PDFAggressive forms of breast cancer, such as Her2 and triple negative breast cancer (TNBC), are enriched in breast cancer stem cells (BCSC) and have limited therapeutic options. BCSC represent a key cellular reservoir for relapse, metastatic progression and therapeutic resistance. Their ability to resist common cytotoxic therapies relies on different mechanisms, including improved detoxification.
View Article and Find Full Text PDF