Publications by authors named "F Penent"

Auger electron spectroscopy is an omnipresent experimental tool in many fields of fundamental research and applied science. The determination of the kinetic energies of the Auger electrons yields information about the element emitting the electron and its chemical environment at the time of emission. Here, we present an experimental approach to determine Auger spectra for emitter sites in the vicinity of a positive elementary charge based on electron-electron-electron and electron-electron-photon coincidence spectroscopy.

View Article and Find Full Text PDF

We have built and commissioned a novel standalone multi-crystal x-ray spectrometer (MOSARIX) in the von Hamos configuration based on highly annealed pyrolytic graphite crystals. The spectrometer is optimized for the energy range of 2-5 keV, but this range can be extended up to 20 keV by using higher reflection orders. With its nine crystals and a Pilatus detector, MOSARIX achieves exceptional detection efficiency with good resolving power (better than 4000), opening the door to study small cross section phenomena and perform fast in situ measurements.

View Article and Find Full Text PDF

Excited double-core-hole states of isolated water molecules resulting from the sequential absorption of two x-ray photons have been investigated. These states are formed through an alternative pathway, where the initial step of core ionization is accompanied by the shake-up of a valence electron, leading to the same final states as in the core-ionization followed by core-excitation pathway. The capability of the x-ray free-electron laser to deliver very intense, very short, and tunable light pulses is fully exploited to identify the two different pathways.

View Article and Find Full Text PDF

Understanding the mechanisms of X-ray radiation damage in biological systems is of prime interest in medicine (radioprotection, X-ray therapy…). Study of low-energy rays, such as soft-X rays and light ions, points to attribute their lethal effect to clusters of energy deposition by low-energy electrons. The first step, at the atomic or molecular level, is often the ionization of inner-shell electrons followed by Auger decay in an aqueous environment.

View Article and Find Full Text PDF

Single-photon multiple photoionization results from electron correlations that make this process possible beyond the independent electron approximation. To study this phenomenon experimentally, the detection in coincidence of all emitted electrons is the most direct approach. It provides the relative contribution of all possible multiple ionization processes, the energy distribution between electrons that can reveal simultaneous or sequential mechanisms, and, if possible, the angular correlations between electrons.

View Article and Find Full Text PDF