Phys Rev E Stat Nonlin Soft Matter Phys
February 2009
In particle-based algorithms, the effect of binary collisions is commonly described in a statistical way, using Monte Carlo techniques. It is shown that, in the relativistic regime, stringent constraints should be considered on the sampling of particle pairs for collision, which are critical to ensure physically meaningful results, and that nonrelativistic sampling criteria (e.g.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2007
Recently, the collisionless expansion of spherical nanoplasmas has been analyzed with a new ergodic model, clarifying the transition from hydrodynamiclike to Coulomb-explosion regimes, and providing accurate laws for the relevant features of the phenomenon. A complete derivation of the model is presented here. The important issue of the self-consistent initial conditions is addressed by analyzing the initial charging transient due to the electron expansion, in the approximation of immobile ions.
View Article and Find Full Text PDFThe collisionless expansion of spherical plasmas composed of cold ions and hot electrons is analyzed using a novel kinetic model, with special emphasis on the influence of the electron dynamics. Simple, general laws are found, relating the relevant expansion features to the initial conditions of the plasma, determined from a single dimensionless parameter. A transition is identified in the behavior of the ion energy spectrum, which is monotonic only for high electron temperatures, otherwise exhibiting a local peak far from the cutoff energy.
View Article and Find Full Text PDFThe explosion dynamics of very large (approximately 10(6)-10(7) atoms) deuterium clusters irradiated by ultraintense laser pulses (I approximately 10(18) W/cm(2)) is analyzed self-consistently with one-to-one three-dimensional and two-dimensional fully relativistic particle-in-cell simulations. Small-scale shock shells in the expanding ion cloud are observed. A technique to induce the formation of large shock shells inside a single cluster, increasing the probability of intracluster nuclear reactions, is proposed and demonstrated.
View Article and Find Full Text PDF