Unlabelled: Oxidative stress and inflammation are key promoters of atherosclerosis and myocardial damage. When orally administered, the novel astaxanthin prodrug CDX-085 delivers high levels of the xanthophyll antioxidant astaxanthin that protects LDL from oxidation and reduces primary thrombosis. In this study, we analyzed whether delivery of astaxanthin from administration of the CDX-085 prodrug reduces plasma lipoprotein levels and the progression of atherosclerosis in low-density lipoprotein receptor negative (LDLR(-/-)) and apolipoprotein E deficient (ApoE(-/-)) mice.
View Article and Find Full Text PDFInflammation triggered by oxidative stress is the cause of much, perhaps even most, chronic human disease including human aging. The oxidative stress originates mainly in mitochondria from reactive oxygen and reactive nitrogen species (ROS/RNS) and can be identified in most of the key steps in the pathophysiology of atherosclerosis and the consequential clinical manifestations of cardiovascular disease. In addition to the formation of atherosclerosis, it involves lipid metabolism, plaque rupture, thrombosis, myocardial injury, apoptosis, fibrosis and failure.
View Article and Find Full Text PDFBackground: Cardiovascular disease remains the leading cause of morbidity and premature mortality in most industrialized countries as well as in developing nations. A pro-oxidative state appears to promote and/or exacerbate vascular disease complications. Furthermore, a state of low-grade chronic inflammation can promote increased oxidative stress and lead to endothelial cell and platelet dysfunction ultimately contributing to thrombogenesis.
View Article and Find Full Text PDFOxidative stress and inflammation are implicated in several different manifestations of cardiovascular disease (CVD). They are generated, in part, from the overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that activate transcriptional messengers, such as nuclear factor-kappaB, tangibly contributing to endothelial dysfunction, the initiation and progression of atherosclerosis, irreversible damage after ischemic reperfusion, and even arrhythmia, such as atrial fibrillation. Despite this connection between oxidative stress and CVD, there are currently no recognized therapeutic interventions to address this important unmet need.
View Article and Find Full Text PDF