Publications by authors named "F Parat"

Noxo1, the organizing element of the Nox1-dependent NADPH oxidase complex responsible for producing reactive oxygen species, has been described to be degraded by the proteasome. We mutated a D-box in Noxo1 to express a protein with limited degradation and capable of maintaining Nox1 activation. Wild-type (wt) and mutated Noxo1 (mut1) proteins were expressed in different cell lines to characterize their phenotype, functionality, and regulation.

View Article and Find Full Text PDF

Phosphoric acid manufacturing generates large amounts of phosphogypsum (PG); a by-product generally disposed in the surface or evacuated in the seawater without any pretreatment. Phosphogypsum may host non-negligible amounts of valuable elements such as rare earth elements (REEs), which are critical elements on the global market. Surface disposal of PG may be a sustainable option to allow further processing in order to recover valuable elements.

View Article and Find Full Text PDF

Resistance to treatments is one of the leading causes of cancer therapy failure. Oxaliplatin is a standard chemotherapy used to treat metastatic colorectal cancer. However, its efficacy is greatly reduced by the development of resistances.

View Article and Find Full Text PDF

The Microtubule-Associated Protein Tau is expressed in several cancers, including low-grade gliomas and glioblastomas. We have previously shown that Tau is crucial for the 2D motility of several glioblastoma cell lines, including U87-MG cells. Using an RNA interference (shRNA), we tested if Tau contributed to glioblastoma in vivo tumorigenicity and analyzed its function in a 3D model of multicellular spheroids (MCS).

View Article and Find Full Text PDF

VE-cadherin is an essential adhesion molecule in endothelial adherens junctions, and the integrity of these complexes is thought to be regulated by VE-cadherin tyrosine phosphorylation. We have previously shown that adrenomedullin (AM) blockade correlates with elevated levels of phosphorylated VE-cadherin (pVE-cadherin) in endothelial cells, associated with impaired barrier function and a persistent increase in vascular endothelial cell permeability. However, the mechanism underlying this effect is unknown.

View Article and Find Full Text PDF