Publications by authors named "F Panabieres"

Background: Plant pathogens secrete effector proteins into host cells to suppress immune responses and manipulate fundamental cellular processes. One of these processes is autophagy, an essential recycling mechanism in eukaryotic cells that coordinates the turnover of cellular components and contributes to the decision on cell death or survival.

Results: We report the characterization of AVH195, an effector from the broad-spectrum oomycete plant pathogen, Phytophthora parasitica.

View Article and Find Full Text PDF

The phytohormone abscisic acid (ABA) regulates cell growth and plant development, and contributes to defence responses to pathogens. We previously showed that the Arabidopsis malectin-like domain leucine-rich repeat receptor-like kinase (MLD-LRR-RLK) impaired oomycete susceptibility 1 (IOS1) attenuates ABA signalling during infection with the oomycete downy mildew pathogen Hyaloperonospora arabidopsidis. The exodomain of IOS1 with its MLD retains the receptor in the endoplasmic reticulum (ER), where it interacts with the ribophorin HAP6 to dampen a pathogen-induced ER stress response called the unfolded protein response (UPR).

View Article and Find Full Text PDF

Malectins from the oligosaccharyltransferase (OST) complex in the endoplasmic reticulum (ER) of animal cells are involved in ER quality control and contribute to the Unfolded Protein Response (UPR). Malectins are not found in plant cells, but malectin-like domains (MLDs) are constituents of many membrane-bound receptors. In , the MLD-containing receptor IOS1 promotes successful infection by filamentous plant pathogens.

View Article and Find Full Text PDF

Oomycetes, of the genus , comprise of some of the most devastating plant pathogens. Parasitism of results from evolution from an autotrophic ancestor and adaptation to a wide range of environments, involving metabolic adaptation. Sequence mining showed that spp.

View Article and Find Full Text PDF

Intercropping or assistant endophytes promote phytoremediation capacities of hyperaccumulators and enhance their tolerance to heavy metal (HM) stress. Findings from a previous study showed that intercropping the hyperaccumulator Sonchus asper (L.) Hill grown in HM-contaminated soils with maize improved the remediating properties and indicated an excluder-to-hyperaccumulator switched mode of action towards lead.

View Article and Find Full Text PDF