Publications by authors named "F Paltauf"

N-acylethanolamines (NAEs) and N-acylphosphatidylethanolamines (NAPEs) are trace constituents of vertebrate cells and tissues and much is known about their metabolism and possible function in animals. Here we report for the first time the identification and quantification of NAEs and NAPEs in several strains of the yeast Saccharomyces cerevisiae. Gas chromatography-mass spectrometry of appropriate derivatives revealed 16:0, 16:1, 18:0 and 18:1 N-acyl groups in both NAE and NAPE whose levels, in wild-type cells, were 50 to 90 and 85 to 750 pmol/micromol lipid P, respectively (depending on the phase of growth).

View Article and Find Full Text PDF

The genome of the yeast, Saccharomyces cerevisiae, contains three highly similar genes coding for phospholipases B/lysophospholipases. These enzymes behave differently with respect to substrate preferences in vitro and relative contributions to phospholipid catabolism in vivo [Merkel, Fido, Mayr, Pruger, Raab, Zandonella, Kohlwein and Paltauf (1999) J. Biol.

View Article and Find Full Text PDF

Sec14p of the yeast Saccharomyces cerevisiae is involved in protein secretion and regulation of lipid synthesis and turnover in vivo, but acts as a phosphatidylinositol-phosphatidylcholine transfer protein in vitro. In this work, the five homologues of Sec14p, Sfh1p-Sfh5p, were subjected to biochemical and cell biological analysis to get a better view of their physiological role. We show that overexpression of SFH2 and SFH4 suppressed the sec14 growth defect in a more and SFH1 in a less efficient way, whereas overexpression of SFH3 and SFH5 did not complement sec14.

View Article and Find Full Text PDF

Choline phospholipids are the major constituents of the outer layer of the erythrocyte membrane. To investigate their lateral membrane organization we determined the fluorescence lifetime properties of diphenylhexatriene analogues of phosphatidylcholine, choline plasmalogen, (the respective enolether derivative), and sphingomyelin inserted into the outer layer of hemoglobin-free ghosts. Fluorescence lifetimes were recorded by time-resolved phase and modulation fluorometry and analyzed in terms of Continuous Lorentzian distributions.

View Article and Find Full Text PDF

We report on the determination of active enzyme components in pure and crude lipases, using fluorescent inhibitors for covalent modification and visualization of the enzymatically active proteins. Lipase-specific compounds are triacylglycerol analogs, namely 1,2(2, 3)-di-O-alkylglyceroalkylphosphonic acid-p-nitrophenyl esters, containing a fluorescent substituent bound to the omega-end of an alkyl chain. Inhibitors derived from single-chain alcohols, such as p-nitrophenyl esters of fluorescent alkyl phosphonates, react with lipases and esterases.

View Article and Find Full Text PDF