Highly emissive AgS nanocrystals (NCs) passivated with a gradated shell incorporating Se and Zn were synthesized in air, and the temperature dependence of their photoluminescence quantum yield (PLQY) was quantified in both organic and aqueous media at ∼1200 nm. The relevance of this parameter, measured at physiological temperatures, is highlighted for applications that rely on the near infrared (NIR) photoluminescence of NCs, such as deep NIR imaging or luminescence nanothermometry. Hyperspectral NIR imaging shows that AgS-based NCs with a PLQY in organic media of about 10% are inefficient for imaging at 40 °C through 20 mm thick tissue with low laser irradiation power densities.
View Article and Find Full Text PDFAnthropogenic activities may alter felid assemblage structure, facilitating the persistence of tolerant species (commonly mesopredators), excluding ecologically demanding ones (top predators) and, consequently, changing coexistence rules. We aimed to determine how human activities influence intraguild relationships among top predators and their cascading effects on mesopredators, which remain poorly understood despite evidence of top carnivore decline. We used structural equation modeling at a continental scale to investigate how habitat quality and quantity, livestock density, and other human pressures modified the intraguild relations of the 3 species that are at the top of the food chain in the Neotropics: jaguars (Panthera onca), pumas (Puma concolor), and ocelots (Leopardus pardalis).
View Article and Find Full Text PDFInflammation and immune responses are intricately intertwined processes crucial for maintaining homeostasis and combating against pathogens. These processes involve complex signaling pathways, notably the Nuclear Factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) pathways, which play crucial roles. Sulforaphane (SFN), a nutraceutic, has emerged as a potential regulator of NF-κB and MAPK signaling pathways, exhibiting anti-inflammatory properties.
View Article and Find Full Text PDFBackground: Immunopathology in food allergy is characterized by an uncontrolled type 2 immune response and specific-IgE production. Recent studies have determined that group 2 innate lymphoid cells (ILC2) participate in the food allergy pathogenic mechanism and their severity. Our objective was to investigate the role of ILC2 in peach-allergic patients due to non-specific lipid transfer protein (Pru p 3) sensitization.
View Article and Find Full Text PDF