The activity/stability towards the ORR of Pt Gd/C nanoalloys has been enhanced by controlling the atmosphere during the dealloying process. By minimising the formation of porous nanoarchitectures, the ORR activity is increased, and is accompanied by higher activity retention and attenuation of metal dissolution on cycling to high voltage.
View Article and Find Full Text PDFWe propose an original method for the determination of the physical properties of nanometer sized helium bubbles using spectrum imaging in an energy-filtered transmission electron microscope. Helium bubbles synthesized by high fluence implantation and thermal annealing in silicon are investigated. The acquisition parameters are determined to optimize both signal/noise ratio and time.
View Article and Find Full Text PDFUltradense macroscopic arrays of ferromagnetic alloy nanowires exhibit unique properties that make them attractive both for basic physics studies and for prospective nanodevice applications in various areas. We report here on the production of self-organized equiatomic FePt nanowires produced by glancing-angle ion-beam codeposition on alumina nanoripple patterns at room temperature and subsequent annealing at 600 °C. This study demonstrates that periodically aligned FePt nanowires with tunable size (∼10-20 nm width and ∼0.
View Article and Find Full Text PDFIn multiferroic BiFeO(3) thin films grown on highly mismatched LaAlO(3) substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic properties. Notably, the highly distorted phase quasiconcomitantly presents an abrupt structural change, transforms from a standard to a nonconventional ferroelectric, and transitions from antiferromagnetic to paramagnetic at 360±20 K. These coupled ferroic transitions just above room temperature hold promises of giant piezoelectric, magnetoelectric, and piezomagnetic responses, with potential in many applications fields.
View Article and Find Full Text PDFAn accurate characterization of the structure of hydrogen-induced platelets is a prerequisite for investigating both hydrogen aggregation and formation of larger defects. On the basis of quantitative high resolution transmission electron microscopy experiments combined with extensive first principles calculations, we present a model for the atomic structure of (001) hydrogen-induced platelets in germanium. It involves broken Ge-Ge bonds in the [001] direction that are dihydride passivated, vacancies, and trapped H(2) molecules, showing that the species involved in platelet formation depend on the habit plane.
View Article and Find Full Text PDF