Microalgae could become a more sustainable starch source than conventional crops. However, available refinery processes are lacking. In this study, we develop different innovative processes to refine microalgal starch and obtaining starch-based bioplastics.
View Article and Find Full Text PDFArsenic-contaminated water is a global concern that demands the development of cost-effective treatments to ensure a safe drinking water supply for people worldwide. In this paper, we report the optimization of a two-phase synthesis for producing a hydrochar core from olive pomace to serve as support for the deposition of Fe-hydroxide, which is the active component in As(V) removal. The operating conditions considered were the initial concentration of Fe in solution in the hydrothermal treatment (phase I) and the temperature of Fe precipitation (phase II).
View Article and Find Full Text PDFA great research effort is involved in polyhydroxyalkanoates (PHAs) production and characterization since they are an attractive degradable polyester family that potentially could substitute oil-based polymers. This is due to two main key factors: their production is sustainable, being that they are produced by microorganisms possibly fed by organic waste-derived products, and they are degradable. Moreover, PHAs' thermal and mechanical properties could be tuned by varying their monomeric composition through the proper selection of microorganism feedstock and bioreactor operative conditions.
View Article and Find Full Text PDFThe application of deep eutectic solvents (DESs) to dissolve metal oxides in lithium-ion batteries (LIBs) recycling represents a green technological alternative to the mineral acids employed in hydrometallurgical recycling processes. However, DESs are much more expensive than mineral acids and must be reused to ensure economic feasibility of LIB recycling. To evaluate DES reusability, the role of the choline chloride-ethylene glycol DES decomposition products on metal oxides dissolution was investigated.
View Article and Find Full Text PDFThe aim of the present work is the recycling treatment of tubular α-AlO-supported ceramic membranes with a Pd/Ag selective layer, employed in hydrogen production with integrated CO capture. A nitric acid leaching treatment was investigated, and recovered ceramic supports were characterized, demonstrating their suitability for the production of novel efficient membranes. The main objective was the metal dissolution that preserved the support integrity in order to allow the recovered membrane to be suitable for a new deposition of the selective layer.
View Article and Find Full Text PDF