Magnesium and its alloys represent promising candidates for biomedical implants due to their biodegradability and mechanical properties, which are similar to natural bone. However, their rapid degradation process characterized by dynamic pH fluctuations and significant hydrogen gas evolution during biocorrosion adversely affects both in vitro and in vivo assessments. While the ISO 10993-5 and 12 standards provide guidelines for evaluating the in vitro biocompatibility of biodegradable materials, they also introduce testing variability conditions that yield inconsistent results.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Background: Magnesium (Mg) and its alloys are promising candidates for biodegradable materials in next-generation bone implants due to their favourable mechanical properties and biodegradability. However, their rapid degradation and corrosion, potentially leading to toxic byproducts, pose significant challenges for widespread use.
Objectives: This study aimed to address the challenges associated with Mg-based materials by thoroughly evaluating the biocompatibility, genotoxicity, and mechanical properties of Mg-based devices manufactured via Single Point Incremental Forming (SPIF).
Hereditary breast cancer accounts for 5-10% of all cases, with pathogenic variants in and other susceptibility genes playing a crucial role. This study elucidates the prevalence and spectrum of germline variants in 13 cancer predisposition genes among high-risk hereditary breast cancer patients from Southern Italy. We employed next-generation sequencing (NGS) to analyze 254 individuals selected through genetic counseling.
View Article and Find Full Text PDFGenes (Basel)
September 2024
This Special Issue of , titled "Genetic and Molecular Basis of Inherited Disorders", presents a collection of pioneering research articles that advance our understanding of the genetic mechanisms underlying various hereditary diseases. The studies employ cutting-edge genomic techniques, including next-generation sequencing and genome-wide association studies, to elucidate novel genetic variants and their functional implications. Key investigations span a diverse range of conditions, from congenital idiopathic nystagmus and hereditary hearing loss to familial hypercholesterolemia and rare cancer predisposition syndromes.
View Article and Find Full Text PDF: Magnesium alloys degrade rapidly in salt solutions, which limits their use without passivating treatments. AZ31 alloy is particularly promising for implant applications owing to its biodegradability and mechanical properties, necessitating effective corrosion-resistant coatings. : In this study, a self-passivating reactive coating was designed and evaluated for AZ31 magnesium alloy plates using β-tricalcium phosphate (TCP) to enhance corrosion resistance and biocompatibility.
View Article and Find Full Text PDF