Chromatin architecture is a fundamental mediator of genome function. Fasting is a major environmental cue across the animal kingdom, yet how it impacts three-dimensional (3D) genome organization is unknown. Here we show that fasting induces an intestine-specific, reversible and large-scale spatial reorganization of chromatin in Caenorhabditis elegans.
View Article and Find Full Text PDFTo maintain protein homeostasis in changing nutrient environments, cells must precisely control the amount of their proteins, despite the accompanying changes in cell growth and biosynthetic capacity. As nutrients are major regulators of cell cycle length and progression, a particular challenge arises for the nutrient-dependent regulation of 'cell cycle genes', which are periodically expressed during the cell cycle. One important example are histones, which are needed at a constant histone-to-DNA stoichiometry.
View Article and Find Full Text PDFSpheroids have become principal three-dimensional models to study cancer, developmental processes, and drug efficacy. Single-cell analysis techniques have emerged as ideal tools to gauge the complexity of cellular responses in these models. However, the single-cell quantitative assessment based on 3D-microscopic data of the subcellular distribution of fluorescence markers, such as the nuclear/cytoplasm ratio of transcription factors, has largely remained elusive.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) is present in multiple copies within cells and is required for mitochondrial ATP generation. Even within individual cells, mtDNA copies can differ in their sequence, a state known as heteroplasmy. The principles underlying dynamic changes in the degree of heteroplasmy remain incompletely understood, due to the inability to monitor this phenomenon in real time.
View Article and Find Full Text PDFTo maintain stable DNA concentrations, proliferating cells need to coordinate DNA replication with cell growth. For nuclear DNA, eukaryotic cells achieve this by coupling DNA replication to cell-cycle progression, ensuring that DNA is doubled exactly once per cell cycle. By contrast, mitochondrial DNA replication is typically not strictly coupled to the cell cycle, leaving the open question of how cells maintain the correct amount of mitochondrial DNA during cell growth.
View Article and Find Full Text PDF