Publications by authors named "F P T Baaijens"

Foreign body giant cells (FBGCs) are crucial in the foreign body reaction at the biomaterial-tissue interface, forming through the fusion of cells from the monocyte/macrophage lineage and performing functions such as material degradation and fibrous encapsulation. Yet, their presence and role in biomaterials research is only slowly unveiled. This review analyzed existing FBGC literature identified through a search string and sources from FBGC articles to evaluate the most commonly used methods and highlight the challenges in establishing a standardized protocol.

View Article and Find Full Text PDF

During the Ross procedure, an aortic heart valve is replaced by a patient's own pulmonary valve. The pulmonary autograft subsequently undergoes substantial growth and remodeling (G&R) due to its exposure to increased hemodynamic loads. In this study, we developed a homogenized constrained mixture model to understand the observed adaptation of the autograft leaflets in response to the changed hemodynamic environment.

View Article and Find Full Text PDF

Blood vessels grow and remodel in response to mechanical stimuli. Many computational models capture this process phenomenologically, by assuming stress homeostasis, but this approach cannot unravel the underlying cellular mechanisms. Mechano-sensitive Notch signaling is well-known to be key in vascular development and homeostasis.

View Article and Find Full Text PDF

Arteries grow and remodel in response to mechanical stimuli. Hypertension, for example, results in arterial wall thickening. Cell-cell Notch signaling between vascular smooth muscle cells (VSMCs) is known to be involved in this process, but the underlying mechanisms are still unclear.

View Article and Find Full Text PDF

As the next step in the translation of vascular tissue engineering, this study uniquely combines transcatheter delivery and in situ tissue regeneration using a novel bioresorbable electrospun polymer graft that can be implanted minimally invasively. Once delivered inside a small-diameter vessel, the electrospun microstructure supports the vessel wall, facilitates cellular infiltration, and guides organized tissue formation.

View Article and Find Full Text PDF