The photophysics of the S (ππ*) state of the polycyclic aromatic nitrogen-containing hydrocarbon (PANH) quinoline is investigated in a free jet using a picosecond laser system. A [1 + 1] multiphoton ionization spectrum yields the S origin at around 32 200 cm and reveals several vibronic bands. In time-resolved experiments, quinoline is then excited between 312.
View Article and Find Full Text PDFSorting and dispensing distinct numbers of cellular aggregates enables the creation of three-dimensional (3D) in vitro models that replicate in vivo tissues, such as tumor tissue, with realistic metabolic properties. One method for creating these models involves utilizing Drop-on-Demand (DoD) dispensing of individual Multicellular Spheroids (MCSs) according to material jetting processes. In the DoD approach, a droplet dispenser ejects droplets containing these MCSs.
View Article and Find Full Text PDFSubstituting CC with the isoelectronic BN units is a promising approach to modify the optoelectronic properties of polycyclic aromatic hydrocarbons. While computational studies have already addressed trends in the electronic structure of the various isosteres, experimental data are still scarce. Here, the excited state spectroscopy and dynamics of 4,8-azaboranaphthalene were studied by picosecond time-resolved photoionization in a supersonic jet and analyzed with the aid of XMS-CASPT2 and time-dependent DFT calculations.
View Article and Find Full Text PDFInsertion of a nitrogen atom modifies the electronic structures and photochemistry of polycyclic aromatic hydrocarbons by introducing nπ* states into the molecules. To better understand the electronic structures of isolated polycyclic aromatic nitrogen-containing hydrocarbons (PANHs) and their dimers as well as the influence of the position of the nitrogen atom in the molecule, we investigate three different azaphenanthrenes, benzo[]quinoline, benzo[]quinoline, and phenanthridine, in a joint experimental and computational study. Experimentally, resonance-enhanced multiphoton ionization (REMPI) spectroscopy is applied to characterize the excited electronic states.
View Article and Find Full Text PDFWe investigated the excited-state dynamics of 4-(dimethylamino)benzethyne (4-DMABE) in a combined theoretical and experimental study using surface-hopping simulations and time-resolved ionisation experiments. The simulations predict a decay of the initially excited S state into the S state in only a few femtoseconds, inducing a subsequent partial twist of the dimethylamino group within ∼100 fs. This leads to drastically reduced Franck-Condon factors for the ionisation transition to the cationic ground state, thus inhibiting the effective ionisation of the molecule, which leads to a vanishing photoelectron signal on a similar timescale as observed in our time-resolved photoelectron spectra.
View Article and Find Full Text PDF