Publications by authors named "F P Schiestl"

The geographic mosaic of coevolution predicts reciprocal selection, the first step in coevolution, to vary with changing biotic and abiotic environmental conditions. Studying how temperature affects reciprocal selection is essential to connect effects of global warming on the microevolutionary patterns of coevolution to the ecological processes underlying them. In this study, we investigated whether temperature influenced reciprocal selection between a plant (Brassica rapa) and its pollinating butterfly herbivore (Pieris rapae).

View Article and Find Full Text PDF

Increased temperature can induce plastic changes in many plant traits. However, little is known about how these changes affect plant interactions with insect pollinators and herbivores, and what the consequences for plant fitness and selection are. We grew fast-cycling Brassica rapa plants at two temperatures (ambient and increased temperature) and phenotyped them (floral traits, scent, colour and glucosinolates).

View Article and Find Full Text PDF

Although different ecological factors shape adaptative evolution in natural habitats, we know little about how their interactions impact local adaptation. Here we used eight generations of experimental evolution with outcrossing Brassica rapa plants as a model system, in eight treatment groups that varied in soil type, herbivory (with/without aphids), and pollination mode (hand- or bumblebee-pollination), to study how biotic interactions affect local adaptation to soil. First, we show that several plant traits evolved in response to biotic interactions in a soil-specific way.

View Article and Find Full Text PDF

Shifts in pollinator occurrence and their pollen transport effectiveness drive the evolution of mating systems in flowering plants. Understanding the genomic basis of these changes is essential for predicting the persistence of a species under environmental changes. We investigated the genomic changes in Brassica rapa over nine generations of pollination by hoverflies associated with rapid morphological evolution toward the selfing syndrome.

View Article and Find Full Text PDF

Divergent evolution leads to variation among populations and thus promotes diversification. In plants, adaptation to different soils, pollinator guilds, and herbivores is thought to be a key ecological driver of adaptive divergence, but few studies have investigated this process experimentally. Here we use experimental evolution with fast cycling Brassica rapa plants to study the impact of soil, pollination, herbivory, and their interactions on divergent evolution in various traits during eight generations of selection.

View Article and Find Full Text PDF