Beilstein J Nanotechnol
September 2022
An efficient single-photon emitter (SPE) should emit photons at a high rate into a well-defined spatio-temporal mode along with an accessible numerical aperture (NA) to increase the light extraction efficiency that is required for effective coupling into optical waveguides. Based on a previously developed experimental approach to fabricate hybrid Fabry-Perot microcavities (Ortiz-Huerta et al. , , 33245), we managed to find analytical and finite-difference time-domain (FDTD) values for the, experimentally achievable, geometrical parameters of a hybrid plano-concave microcavity that enhances the spontaneous emission (i.
View Article and Find Full Text PDFFor an efficient single-photon source a high-count rate into a well-defined spectral and spatial mode is desirable. Here we have developed a hybrid planar Fabry-Pérot microcavity by using a two-photon polymerization process (2PP) where coupling between single-photon sources (diamond colour centres) and resonance modes is observed. The first step consists of using the 2PP process to build a polymer table structure around previously characterized nitrogen-vacancy (NV) centres on top of a distributed Bragg reflector (DBR) with a high reflectivity at the NV zero-phonon line (ZPL).
View Article and Find Full Text PDFOpt Quantum Electron
February 2017
We present modelling results for efficient coupling of nanodiamonds containing single colour centres to polymer structures on distributed Bragg reflectors. We explain how hemispherical and super-spherical structures redirect the emission of light into small numerical apertures. Coupling efficiencies of up to 68.
View Article and Find Full Text PDF