Publications by authors named "F Oehler"

Two-dimensional (2D) material resonators have emerged as promising platforms for advanced nanomechanical applications due to their exceptional mechanical properties, tunability, and nonlinearities. We explored the strong mechanical mode coupling between two adjacent 3R-WSe nanodrums at room temperature. Combining a piezoelectric material, as noncentrosymmetric 3R-WSe, and vibration manipulation is the building block for phononic experiments with 2D materials.

View Article and Find Full Text PDF

The growth of bilayers of two-dimensional (2D) materials on conventional 3D semiconductors results in 2D/3D hybrid heterostructures, which can provide additional advantages over more established 3D semiconductors while retaining some specificities of 2D materials. Understanding and exploiting these phenomena hinge on knowing the electronic properties and the hybridization of these structures. Here, we demonstrate that a rhombohedral-stacked bilayer (AB stacking) can be obtained by molecular beam epitaxy growth of tungsten diselenide (WSe) on a gallium phosphide (GaP) substrate.

View Article and Find Full Text PDF

Two-dimensional (2D) ferroelectric (FE) materials are promising compounds for next-generation nonvolatile memories due to their low energy consumption and high endurance. Among them, α-InSe has drawn particular attention due to its in- and out-of-plane ferroelectricity, whose robustness has been demonstrated down to the monolayer limit. This is a relatively uncommon behavior since most bulk FE materials lose their ferroelectric character at the 2D limit due to the depolarization field.

View Article and Find Full Text PDF

In two dimensional materials, substitutional doping during growth can be used to alter the electronic properties. Here, we report on the stable growth of p-type hexagonal boron nitride (h-BN) using Mg-atoms as substitutional impurities in the h-BN honeycomb lattice. We use micro-Raman spectroscopy, angle-resolved photoemission measurements (nano-ARPES) and Kelvin probe force microscopy (KPFM) to study the electronic properties of Mg-doped h-BN grown by solidification from a ternary Mg-B-N system.

View Article and Find Full Text PDF

Atomically thin two-dimensional (2D) layered semiconductors such as transition metal dichalcogenides have attracted considerable attention due to their tunable band gap, intriguing spin-valley physics, piezoelectric effects and potential device applications. Here we study the electronic properties of a single layer WSSealloys. The electronic structure of this alloy, explored using angle resolved photoemission spectroscopy, shows a clear valence band structure anisotropy characterized by two paraboloids shifted in one direction of the-space by a constant in-plane vector.

View Article and Find Full Text PDF