Background: Physical activity has been associated with preventing the development of type 2 diabetes and atherosclerotic cardiovascular disease. However, our understanding of the precise molecular mechanisms underlying these effects remains incomplete and good biomarkers to objectively assess physical activity are lacking.
Methods: We analyzed 3072 serum proteins in 26 men, normal weight or overweight, undergoing 12 weeks of a combined strength and endurance exercise intervention.
Physical activity is effective for preventing and treating type 2 diabetes, but some individuals do not achieve metabolic benefits from exercise ("non-responders"). We investigated non-responders in terms of insulin sensitivity changes following a 12-week supervised strength and endurance exercise program. We used a hyperinsulinaemic euglycaemic clamp to measure insulin sensitivity among 26 men aged 40-65, categorizing them into non-responders or responders based on their insulin sensitivity change scores.
View Article and Find Full Text PDFPerilipin 2 (Plin2) binds to the surface of hepatic lipid droplets (LDs) with expression levels that correlate with triacylglyceride (TAG) content. We investigated if Plin2 is important for hepatic LD storage in fasted or high-fat diet-induced obese Plin2 and Plin2 mice. Plin2 mice had comparable body weights, metabolic phenotype, glucose tolerance, and circulating TAG and total cholesterol levels compared with Plin2 mice, regardless of the dietary regime.
View Article and Find Full Text PDFPurpose Of Review: To summarize the key factors contributing to the onset and progress of nonalcoholic fatty liver disease (NAFLD) and put them in a system genetics context. We particularly focus on how genetic regulation of hepatic lipids contributes to NAFLD.
Recent Findings: NAFLD is characterized by excessive accumulation of fat in the liver.
Physical activity is associated with beneficial adaptations in human and rodent metabolism. We studied over 50 complex traits before and after exercise intervention in middle-aged men and a panel of 100 diverse strains of female mice. Candidate gene analyses in three brain regions, muscle, liver, heart, and adipose tissue of mice indicate genetic drivers of clinically relevant traits, including volitional exercise volume, muscle metabolism, adiposity, and hepatic lipids.
View Article and Find Full Text PDF