A 3-D printing method to produce dental prostheses of complex shapes from a commercial, photocurable resin-ceramic slurry is developed and optimized. The microstructure, mechanical properties and wear behavior of the resulting material are evaluated and compared with a conventional/control sample and other ceramic-polymer dental composites. Commercial resin-ceramic dental slurries can be successfully extruded and appropriately photocured in a low cost 3-D printing system to produce cost-efficient complex dental parts that could be used in indirect restorations.
View Article and Find Full Text PDFFood Funct
July 2024
Adolescence is characterized by increased vulnerability to addiction and ethanol (EtOH) toxicity, particularly through binge drinking (BD), a favored acute EtOH-ingestion pattern among teenagers. BD, highly pro-oxidant, induces oxidative stress (OS), affecting skeletal muscle (SKM), where selenium (Se), an antioxidant element and catalytic center of selenoproteins, is stored, among other tissues. Investigating the effects of Se supplementation on SKM after BD exposure holds therapeutic promise.
View Article and Find Full Text PDFStudies on adolescent rats, when body composition is changing deeply, reveal that the administration of sodium selenite and selenium nanoparticles (SeNPs), at the same dose, have opposite effects on adipogenesis in white adipose tissue (WAT). To investigate the mechanisms involved in these contrasting effects by means of transcriptomic analysis, three groups of male adolescent rats ( = 18) were used: control (C), selenite supplemented (S), and SeNPs supplemented (NS). Both treated groups received a twofold increase in Se dose compared to the control group through water intake for three weeks.
View Article and Find Full Text PDFFASEB J
January 2024
Binge drinking (BD) is an especially pro-oxidant pattern of alcohol consumption, particularly widespread in the adolescent population. In the kidneys, it affects the glomerular filtration rate (GFR), leading to high blood pressure. BD exposure also disrupts folic acid (FA) homeostasis and its antioxidant properties.
View Article and Find Full Text PDF