Understanding lipid digestion is crucial for promoting human health. Traditional methods for studying lipolysis face challenges in sample representativeness and pre-treatment, and cannot measure real-time lipolysis in vivo. Thus, non-invasive techniques like magnetic resonance imaging (MRI) need to be developed.
View Article and Find Full Text PDFThe increasing demand for food and especially proteins leads to the search for alternative protein sources. Meat co-products, which are available but little used in human food, provide a potential solution to this challenge. The present study aimed to evaluate the nutritional quality of two beef protein ingredients (greasy greaves recovered proteins (GGRP) and water recovered proteins (WRP)), both co-products of the fat rendering process.
View Article and Find Full Text PDFThe study aimed to assess the extent to which protein aggregation, and even the modality of aggregation, can affect gastric digestion, down to the nature of the hydrolyzed peptide bonds. By controlling pH and ionic strength during heating, linear or spherical ovalbumin (OVA) aggregates were prepared, then digested with pepsin. Statistical analysis characterized the peptide bonds specifically hydrolyzed versus those not hydrolyzed for a given condition, based on a detailed description of all these bonds.
View Article and Find Full Text PDFThe valorization of co-products may be a promising way to meet the dual challenge of increasing global food resources and sustainability of food systems. In particular, meat co-products may be nutritionally interesting protein resources, if they offer functional properties in accordance with food applications. In that aim, two bovine co-products, resulting from the fat rendering process, have been characterized, regarding the protein solubility, gelling, and emulsifying properties.
View Article and Find Full Text PDFThe monitoring of food degradation during gastrointestinal digestion is essential in understanding food structure impacts on the bioaccessibility and bioavailability of nutrients. Magnetic Resonance Imaging (MRI) has the unique ability to access information on changes in multi-scale structural features of foods in a spatially resolved and non-destructive way. Our objective was to exploit various opportunities offered by MRI for monitoring starch, lipid and protein hydrolysis, as well as food particle breakdown during the semi-dynamic in vitro gastrointestinal digestion of complex foods combined in a meal.
View Article and Find Full Text PDF