Publications by authors named "F NARANJO"

AlInN ternary semiconductors have attracted much interest for application in photovoltaic devices. Here, we compare the material quality of AlInN layers deposited on Si with different crystallographic orientations, (100) and (111), via radio-frequency (RF) sputtering. To modulate their Al content, the Al RF power was varied from 0 to 225 W, whereas the In RF power and deposition temperature were fixed at 30 W and 300 °C, respectively.

View Article and Find Full Text PDF

Prolonged use of mechanical ventilation (MV) can lead to greater complications for a patient. In clinical practice, it is important to identify patients who could fail in the extubation process. However, accurately predicting the outcome of this process remains a challenge.

View Article and Find Full Text PDF

In clinical practice, when a patient is undergoing mechanical ventilation, it is important to identify the optimal moment for extubation, minimizing the risk of failure. However, this prediction remains a challenge in the clinical process. In this work, we propose a new protocol to study the extubation process, including the electromyographic diaphragm signal (diaEMG) recorded through 5-channels with surface electrodes around the diaphragm muscle.

View Article and Find Full Text PDF

Indium nitride (InN)-based semiconductor saturable absorbers have previously shown advantages for application in near-IR fiber lasers due to their broad modulation depth, ultrafast nonlinear response and thermal stability. However, up to now all demonstrated saturable absorber elements based on InN (either transmissive or reflective) have shown limited performance due to poor coupling and insertion losses. We present here a simple mode-locking device based on a GRIN-rod lens in conjunction with an InN semiconductor saturable absorber mirror (SESAM) for its use in a passively mode-locked all-fiber laser system operating at telecom wavelengths.

View Article and Find Full Text PDF

Compact AlInN layers were grown by radiofrequency sputtering on bare and 15 nm-thick AlN-buffered Si (111) substrates. The crystalline quality of the AlInN layers was studied by high-resolution X-ray diffraction measurements and transmission electron microscopy. Both techniques show an improvement of the structural properties when the AlInN layer is grown on a 15 nm-thick AlN buffer.

View Article and Find Full Text PDF