The microtubule-associated protein tau is an intrinsically disordered protein highly expressed in neuronal axons. In healthy neurons, tau regulates microtubule dynamics and neurite outgrowth. However, pathological conditions can trigger aberrant tau aggregation into insoluble filaments, a hallmark of neurodegenerative disorders known as tauopathies.
View Article and Find Full Text PDFProtein semisynthesis approaches are key for gaining insights into the effects of post-translational modifications (PTMs) on the structure and function of modified proteins. Among PTMs, ubiquitination involves the conjugation of a small protein modifier to a substrate amino acid residue and is unique in controlling a variety of cellular processes. Interest has grown in understanding the role of ubiquitination in neurodegenerative conditions, including tauopathies.
View Article and Find Full Text PDFHeterochromatin protein 1 alpha (HP1α) is an evolutionarily conserved protein that binds chromatin and is important for gene silencing. The protein comprises 191 residues arranged into three disordered regions and two structured domains, the chromo and chromoshadow domain, which associates into a homodimer. While high-resolution structures of the isolated domains of HP1 proteins are known, the structural properties of full-length HP1α remain largely unknown.
View Article and Find Full Text PDFThe spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges because of subsequent waves and long-term consequences of great concern. Here, we chart the molecular basis of COVID-19 pathogenesis by analyzing patients' immune responses at single-cell resolution across disease course and severity. This approach confirms cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identifies a severity-associated activation of the receptor for advanced glycation endproducts (RAGE) pathway in monocytes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2023
Post-translational modifications of Tau are emerging as key players in determining the onset and progression of different tauopathies such as Alzheimer's disease, and are recognized to mediate the structural diversity of the disease-specific Tau amyloids. Here we show that the E3 ligase CHIP catalyzes the site-specific ubiquitination of Tau filaments both in vitro and in cellular models, proving that also Tau amyloid aggregates are direct substrate of PTMs. Transmission electron microscopy and mass spectrometry analysis on ubiquitin-modified Tau amyloids revealed that the conformation of the filaments restricts CHIP-mediated ubiquitination to specific positions of the repeat domain, while only minor alterations in the structure of the fibril core were inferred using seeding experiments in vitro and in a cell-based tauopathy model.
View Article and Find Full Text PDF