Microorganisms' natural ability to live as organized multicellular communities - also known as biofilms - provides them with unique survival advantages. For instance, bacterial biofilms are protected against environmental stresses thanks to their extracellular matrix, which could contribute to persistent infections after treatment with antibiotics. Bacterial biofilms are also capable of strongly attaching to surfaces, where their metabolic by-products could lead to surface material degradation.
View Article and Find Full Text PDFBiofilm growth has been observed in Soviet/Russian (Salyuts and Mir), American (Skylab), and International (ISS) Space Stations, sometimes jeopardizing key equipment like spacesuits, water recycling units, radiators, and navigation windows. Biofilm formation also increases the risk of human illnesses and therefore needs to be well understood to enable safe, long-duration, human space missions. Here, the design of a NASA-supported biofilm in space project is reported.
View Article and Find Full Text PDFObjective: The aim of this in vitro study was to evaluate the influence of different finishing procedures on the wear behavior of zirconia against natural enamel.
Methods: 64 quadratic specimens (10 mm × 10 mm × 2 mm) were cut from a commercial hipped dental Y-TZP ceramic. Four different groups with 16 specimens each were formed according to the following finishing procedures: PZ (polished), RR (fine-grit diamond), GR (coarse-grit diamond), GZ (glazed).
Objectives: The aim of this study was to evaluate the mechanical properties and the subcritical crack growth behavior of a presintered dental Y-TZP (Kavo Everest ZS) and a hot isostatic pressed Y-TZP (Kavo Everest ZH) and to perform life data analysis.
Methods: For each material 150 bending bars were produced. The initial fracture strength was determined in a four-point bending test.
IEEE Trans Nanobioscience
September 2003
Laser-patterning by interference is a method to introduce micropatterns on the surface of TXL and TXB, which were shown to have an effect on the L929 growth. In this experiment, we have produced collagen-coated and laser-patterned TXL and TXB with different dimensions; the groove width of the line patterns varied approximately from 1.2 microm to 9.
View Article and Find Full Text PDF