Publications by authors named "F Morcos"

Article Synopsis
  • Bacterial membranes are influenced by various evolutionary factors, with the enzyme MprF playing a crucial role in modifying membrane lipids.
  • MprF synthesizes lysyl-phosphatidylglycerol (Lys-PG) and a new lipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), prompting further investigation of MprF's substrate specificity in other bacteria.
  • Using protein sequence analysis and machine learning, researchers discovered additional MprF products and the presence of diglucosyl-diacylglycerol (Glc-DAG) as a new substrate, highlighting the enzyme’s evolutionary significance across different bacterial species.
View Article and Find Full Text PDF

This study presents an enhanced protein design algorithm that aims to emulate natural heterogeneity of protein sequences. Initial analysis revealed that natural proteins exhibit a permutation composition lower than the theoretical maximum, suggesting a selective utilization of the 20-letter amino acid alphabet. By not constraining the amino acid composition of the protein sequence but instead allowing random reshuffling of the composition, the resulting design algorithm generates sequences that maintain lower permutation compositions in equilibrium, aligning closely with natural proteins.

View Article and Find Full Text PDF

Machine learning has been proposed as an alternative to theoretical modeling when dealing with complex problems in biological physics. However, in this perspective, we argue that a more successful approach is a proper combination of these two methodologies. We discuss how ideas coming from physical modeling neuronal processing led to early formulations of computational neural networks, e.

View Article and Find Full Text PDF

Mitochondria play a central role in muscle metabolism and function. A unique family of iron-sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration.

View Article and Find Full Text PDF

Protein evolution is guided by structural, functional, and dynamical constraints ensuring organismal viability. Pseudogenes are genomic sequences identified in many eukaryotes that lack translational activity due to sequence degradation and thus over time have undergone "devolution." Previously pseudogenized genes sometimes regain their protein-coding function, suggesting they may still encode robust folding energy landscapes despite multiple mutations.

View Article and Find Full Text PDF