Publications by authors named "F Mitsumori"

Purpose: We propose an absolute quantitation method for metabolites with strongly coupled spin systems using localized 2-dimensional (2D) constant-time correlation spectroscopy (CT-COSY). We also develop two methods for improving the quality of in vivo CT-COSY spectra.

Methods: We substituted an image selected in vivo spectroscopy (ISIS) pulse for a 180° slice pulse in the CT-COSY module to decrease the slice displacement error caused by the chemical shift difference.

View Article and Find Full Text PDF

Purpose: We propose a post-processing framework for localized two-dimensional (2D) magnetic resonance spectroscopy (MRS) in vivo.

Methods: Our framework consists of corrections on eddy current and subject motion along with the framework used in conventional analytical 2D nuclear magnetic resonance (NMR) spectroscopy. In the eddy current correction, the phases of the free induction decays (FIDs) of the metabolite (1)H are corrected along the t₂ direction by the phase of the FID of water (1)H.

View Article and Find Full Text PDF

In constant time (CT) point-resolved spectroscopy (PRESS), echo centers shift with the fast decay of short T₂* on two-dimensional (2D) time domain (TD) data under inhomogeneous B₀ field like in vivo conditions. Though ¹H decoupling along the F₁ direction is a feature of this method, the tilted and broadened peak pattern on the F₁-F₂ plane after reconstruction causes the peaks to overlap. To enhance resolution to achieve highly resolved 2D CT-PRESS spectra in the human brain, we propose a 2-part window function that comprises an enhancement part for shifting echoes with fast decay and a conventional part, such as Lorentzian, Gaussian, or sine-bell function.

View Article and Find Full Text PDF

Apparent transverse-relaxation rate constants (R₂⁺ = 1/T₂⁺) were measured in various regions of the healthy human brain using a multiecho adiabatic spin-echo sequence at five different magnetic fields, 1.5, 1.9, 3, 4.

View Article and Find Full Text PDF

A new method of non-uniform image correction is proposed. Image non-uniformity is originated from the spatial distribution of RF transmission and reception fields, represented as B(1)(+) and B(1)(-), respectively. In our method, B(1)(+) mapping was performed invivo by a phase method.

View Article and Find Full Text PDF