The electron transfer reactions within wild-type Rhodobacter sphaeroides cytochrome bc (cyt bc) were studied using a binuclear ruthenium complex to rapidly photooxidize cyt c. When cyt c, the iron‑sulfur center FeS, and cyt b were reduced before the reaction, photooxidation of cyt c led to electron transfer from FeS to cyt c with a rate constant of k = 80,000 s, followed by bifurcated reduction of both FeS and cyt b by QH in the Q site with a rate constant of k = 3000 s. The resulting Q then traveled from the Q site to the Q site and oxidized one equivalent each of cyt b and cyt b with a rate constant of k = 340 s.
View Article and Find Full Text PDFThe reaction between cytochrome c () and cytochrome c oxidase (CcO) was studied using horse cytochrome c derivatives labeled with ruthenium trisbipyridine at Cys 39 (Ru-39-). Flash photolysis of a 1:1 complex between Ru-39- and bovine CcO at a low ionic strength resulted in the electron transfer from photoreduced heme c to Cu with an intracomplex rate constant of = 6 × 10 s. The K13A, K72A, K86A, and K87A Ru-39- mutants had nearly the same value but bound much more weakly to bovine CcO than wild-type Ru-39-, indicating that lysines 13, 72, 86, and 87 were involved in electrostatic binding to CcO, but were not involved in the electron transfer pathway.
View Article and Find Full Text PDFThe cytochrome bc1 complex (ubiquinone:cytochrome c oxidoreductase) is the central integral membrane protein in the mitochondrial respiratory chain as well as the electron-transfer chains of many respiratory and photosynthetic prokaryotes. Based on X-ray crystallographic studies of cytochrome bc1, a mechanism has been proposed in which the extrinsic domain of the iron-sulfur protein first binds to cytochrome b where it accepts an electron from ubiquinol in the Qo site, and then rotates by 57° to a position close to cytochrome c1 where it transfers an electron to cytochrome c1. This review describes the development of a ruthenium photooxidation technique to measure key electron transfer steps in cytochrome bc1, including rapid electron transfer from the iron-sulfur protein to cytochrome c1.
View Article and Find Full Text PDFDomain rotation of the Rieske iron-sulfur protein (ISP) between the cytochrome (cyt) b and cyt c(1) redox centers plays a key role in the mechanism of the cyt bc(1) complex. Electron transfer within the cyt bc(1) complex of Paracoccus denitrificans was studied using a ruthenium dimer to rapidly photo-oxidize cyt c(1) within 1 μs and initiate the reaction. In the absence of any added quinol or inhibitor of the bc(1) complex at pH 8.
View Article and Find Full Text PDF