IEEE Trans Biomed Circuits Syst
December 2022
This paper presents a custom, low-cost electronic system specifically designed for rapid and quantitative detection of the malaria parasite in a blood sample. The system exploits the paramagnetic properties of malaria-infected red blood cells (iRBCs) for their magnetophoretic capture on the surface of a silicon chip. A lattice of nickel magnetic micro-concentrators embedded in a silicon substrate concentrates the iRBCs above coplanar gold microelectrodes separated by 3 μm for their detection through an impedance measurement.
View Article and Find Full Text PDFIntegrated optical biosensors are gaining increasing attention for their exploitation in lab-on-chip platforms. The standard detection method is based on the measurement of the shift of some optical quantity induced by the immobilization of target molecules at the surface of an integrated optical element upon biomolecular recognition. However, this requires the acquisition of said quantity over the whole hybridization process, which can take hours, during which any external perturbation (e.
View Article and Find Full Text PDFThe search for new rapid diagnostic tests for malaria is a priority for developing an efficient strategy to fight this endemic disease, which affects more than 3 billion people worldwide. In this study, we characterize systematically an easy-to-operate lab-on-chip, designed for the magnetophoretic capture of malaria-infected red blood cells (RBCs). The method relies on the positive magnetic susceptibility of infected RBCs with respect to blood plasma.
View Article and Find Full Text PDFMalaria remains the most important mosquito-borne infectious disease worldwide, with 229 million new cases and 409.000 deaths in 2019. The infection is caused by a protozoan parasite which attacks red blood cells by feeding on hemoglobin and transforming it into hemozoin.
View Article and Find Full Text PDFThe development of innovative diagnostic tests is fundamental in the route towards malaria eradication. Here, we discuss the sorting capabilities of an innovative test for malaria which allows the quantitative and rapid detection of all malaria species. The physical concept of the test exploits the paramagnetic property of infected erythrocytes and hemozoin crystals, the magnetic fingerprints of malaria common to all species, which allows them to undergo a selective magnetophoretic separation driven by a magnetic field gradient in competition with gravity.
View Article and Find Full Text PDF