Saturn's polar stratosphere exhibits the seasonal growth and dissipation of broad, warm vortices poleward of ~75° latitude, which are strongest in the summer and absent in winter. The longevity of the exploration of the Saturn system by Cassini allows the use of infrared spectroscopy to trace the formation of the North Polar Stratospheric Vortex (NPSV), a region of enhanced temperatures and elevated hydrocarbon abundances at millibar pressures. We constrain the timescales of stratospheric vortex formation and dissipation in both hemispheres.
View Article and Find Full Text PDFIn this paper we report the monitoring of seasonal evolution near Titan's poles. We find Titan's south pole to exhibit since 2010 a strong temperature decrease and a dramatic enhancement of several trace species such as complex hydrocarbons and nitriles (HCN and CH in particular) previously only observed at high northern latitudes (Coustenis et al. 2016 and references therein).
View Article and Find Full Text PDFSaturn's largest moon Titan has a substantial nitrogen-methane atmosphere, with strong seasonal effects, including formation of winter polar vortices. Following Titan's 2009 northern spring equinox, peak solar heating moved to the northern hemisphere, initiating south-polar subsidence and winter polar vortex formation. Throughout 2010-2011, strengthening subsidence produced a mesospheric hot-spot and caused extreme enrichment of photochemically produced trace gases.
View Article and Find Full Text PDFThis publisher's note renumbers the reference list in Appl. Opt.56, 5274 (2017)APOPAI0003-693510.
View Article and Find Full Text PDFThe Cassini spacecraft orbiting Saturn carries the composite infrared spectrometer (CIRS) designed to study thermal emission from Saturn and its rings and moons. CIRS, a Fourier transform spectrometer, is an indispensable part of the payload providing unique measurements and important synergies with the other instruments. It takes full advantage of Cassini's 13-year-long mission and surpasses the capabilities of previous spectrometers on Voyager 1 and 2.
View Article and Find Full Text PDF