Translational oncology research strives to explore a new aspect: identifying subgroups that exhibit treatment response even during pre-clinical phases. In this study, we focus on PDX models and their implementation in mouse clinical trials (MCT). Our primary objective was to identify subgroups with different treatment responses using Latent Class Mixed Model (LCMM).
View Article and Find Full Text PDFUnlabelled: In translational oncology research, the patient-derived xenograft (PDX) model and its use in mouse clinical trials (MCT) are increasingly described. This involves transplanting a human tumor into a mouse and studying its evolution during follow-up or until death. A MCT contains several PDXs in which several mice are randomized to different treatment arms.
View Article and Find Full Text PDFNTSR1 abnormal expression by cancer cells makes it a strategic target for antitumoral therapies, such as compounds that use NTSR1 binding probes to deliver cytotoxic agents to tumor cells. Success of these therapies relies on NTSR1 protein availability and accessibility; therefore, understanding the protein's biology is crucial. We studied NTSR1 protein in exogenously and endogenously expressing non-tumoral and tumoral cells.
View Article and Find Full Text PDFIntroduction: Liposomal irinotecan promotes controlled sustained release of irinotecan (CPT-11), therefore, we hypothesize that the therapeutic index (quantitative measurement of the relative efficacy/safety ratio of a drug) will be higher for liposomal than non-liposomal irinotecan.
Methods: We compared the therapeutic indexes of liposomal and non-liposomal irinotecan in mice bearing subcutaneous patient-derived xenograft (PDX) pancreatic tumors under dosing regimens approximating the clinical setting. Following preliminary drug sensitivity/antitumor activity analyses on three PDX tumor models, one model was selected for analyses of efficacy, biomarker, toxicology, pharmacokinetics in mice receiving liposomal irinotecan (2.