Publications by authors named "F Merenda"

Technological developments involving robotics and artificial intelligence devices are being employed evermore in elderly care and the healthcare sector more generally, raising ethical issues and practical questions warranting closer considerations of what we mean by "care" and, subsequently, how to design such software coherently with the chosen definition. This paper starts by critically examining the existing approaches to the ethical design of care robots provided by Aimee van Wynsberghe, who relies on the work on the ethics of care by Joan Tronto. In doing so, it suggests an alternative to their non-principled approach, an alternative suited to tackling some of the issues raised by Tronto and van Wynsberghe, while allowing for the inclusion of two orientative principles.

View Article and Find Full Text PDF

Healthcare is becoming increasingly automated with the development and deployment of care robots. There are many benefits to care robots but they also pose many challenging ethical issues. This paper takes care robots for the elderly as the subject of analysis, building on previous literature in the domain of the ethics and design of care robots.

View Article and Find Full Text PDF

Due to its unique non-diffracting and self-reconstructing nature, Bessel beams have been successfully adopted to trap multiple particles along the beam's axial direction. However, prior bulk-optic based Bessel beams have a fundamental form-factor limitation for in situ, in-vitro, and in-vivo applications. Here we present a novel implementation of Fourier optics along a single strand of hybrid optical fiber in a monolithic manner that can generate pseudo Bessel beam arrays in two-dimensional space.

View Article and Find Full Text PDF

Analysis of genetic and functional variability in populations of living cells requires experimental techniques capable of monitoring cellular processes such as cell signaling of many single cells in parallel while offering the possibility to sort interesting cell phenotypes for further investigations. Although flow cytometry is able to sequentially probe and sort thousands of cells per second, dynamic processes cannot be experimentally accessed on single cells due to the sub-second sampling time. Cellular dynamics can be measured by image cytometry of surface-immobilized cells, however, cell sorting is complicated under these conditions due to cell attachment.

View Article and Find Full Text PDF

A distributed model of the human arterial tree including all main systemic arteries coupled to a heart model is developed. The one-dimensional (1-D) form of the momentum and continuity equations is solved numerically to obtain pressures and flows throughout the systemic arterial tree. Intimal shear is modeled using the Witzig-Womersley theory.

View Article and Find Full Text PDF