Purpose: High-throughput screening (HTS) platforms have been widely used to identify candidate anticancer drugs and drug-drug combinations; however, HTS-based identification of new drug-ionizing radiation (IR) combinations has rarely been reported. Herein, we developed an integrated approach including cell-based HTS and computational large-scale isobolographic analysis to accelerate the identification of radiosensitizing compounds acting strongly and more specifically on cancer cells.
Methods And Materials: In a 384-well plate format, 160 compounds likely to interfere with the cell response to radiation were screened on human glioblastoma (U251-MG) and cervix carcinoma (ME-180) cell lines, as well as on normal fibroblasts (CCD-19Lu).
Bladder cancer is a common cancer; it is the tenth most common cancer in the world. Around one fourth of all diagnosed patients have muscle-invasive bladder cancer (MIBC), characterized by advanced tumors and which remains a lethal disease. The standard treatment for MIBC is the bladder removal by surgery.
View Article and Find Full Text PDFProton therapy allows to avoid excess radiation dose on normal tissues. However, there are some limitations. Indeed, passive delivery of proton beams results in an increase in the lateral dose upstream of the tumor and active scanning leads to strong differences in dose delivery.
View Article and Find Full Text PDFBackground: To determine the effects of concurrent irradiation and T-DM1 on HER2-positive breast cancer cell lines.
Methods: Five human breast cancer cell lines (in vitro study) presenting various levels of HER2 expression were used to determine the potential therapeutic effect of T-DM1 combined with radiation. The toxicity of T-DM1 was assessed using viability assay and cell cycle analysis was performed by flow cytometry after BrdU incorporation.