: The domestication of the grey wolf () and subsequent creation of modern dog breeds have significantly shaped the genetic landscape of domestic canines. This study investigates the genomic effects of hybridization and breeding management practices in two hybrid wolfdog breeds: the Czechoslovakian Wolfdog (CSW) and the Saarloos Wolfdog (SAW). : We analyzed the genomes of 46 CSWs and 20 SAWs, comparing them to 12 German Shepherds (GSHs) and 20 wolves (WLFs), which served as their ancestral populations approximately 70-90 years ago.
View Article and Find Full Text PDFDisentangling phylogenetic and phylogeographic patterns is fundamental to reconstruct the evolutionary histories of and assess their actual conservation status. Therefore, in this study, for the first time, the most exhaustive biogeographic history of European wildcat () populations was reconstructed by typing 430 European wildcats, 213 domestic cats, and 72 putative admixed individuals, collected across the entire species' distribution range, at a highly diagnostic portion of the mitochondrial ND5 gene. Phylogenetic and phylogeographic analyses identified two main ND5 lineages (D and W) roughly associated with domestic and wild polymorphisms.
View Article and Find Full Text PDFNon-invasive genetic sampling is a practical tool to monitor pivotal ecological parameters and population dynamic patterns of endangered species. It can be particularly suitable when applied to elusive carnivores such as the Apennine wolf () and the European wildcat (), which can live in overlapping ecological contexts and sometimes share their habitats with their domestic free-ranging relatives, increasing the risk of anthropogenic hybridisation. In this case study, we exploited all the ecological and genetic information contained in a single biological canid faecal sample, collected in a forested area of central Italy, to detect any sign of trophic interactions between wolves and European wildcats or their domestic counterparts.
View Article and Find Full Text PDFIn the early 1800s, the European roe deer () was probably extirpated from Switzerland, due to overhunting and deforestation. After a federal law was enacted in 1875 to protect lactating females and young, and limiting the hunting season, the roe deer successfully recovered and recolonized Switzerland. In this study, we use mitochondrial DNA and nuclear DNA markers to investigate the recolonization and assess contemporary genetic structure in relation to broad topographic features, in order to understand underlying ecological processes, inform future roe deer management strategies, and explore the opportunity for development of forensic traceability tools.
View Article and Find Full Text PDF