Publications by authors named "F Marva"

To understand the vulnerability of individual species to anthropogenic contamination, it is important to evaluate the different abilities of phytoplankton to respond to environmental changes induced by pollution. The ability of a species to adapt, rather than its initial tolerance, is the basis for survival under rapidly increasing levels of anthropogenic contamination. High doses of osmium (Os) cause massive destruction of diverse phytoplankton groups.

View Article and Find Full Text PDF

Aquatic ecosystems located close to agricultural areas are increasingly polluted by herbicides. We evaluated the capacity for adaptation of green microalgae to lethal concentrations of the herbicide simazine in one strain of Dictyosphaerium chlorelloides and two strains of Scenedesmus intermedius, as well as adaptation to the herbicide diquat in one of the strains of S. intermedius.

View Article and Find Full Text PDF

Metals are often spilled by industries into inland water environments, with adverse consequences. Numerous papers have reported that heavy metals produce massive destruction of algae. Nevertheless, algal populations seem to become tolerant when they have had previous exposures to heavy metals.

View Article and Find Full Text PDF

Anthropogenic water pollution is producing a challenge to the survival of phytoplankton populations. From an ecological point of view, the tolerance of these microorganisms to water pollution is of paramount importance since they are the principal primary producers of aquatic ecosystems. The adaptation of a common chlorophyta species (Scenedesmus intermedius) exposed to selected dose-response chloramphenicol (CAP) concentrations has been analyzed.

View Article and Find Full Text PDF

Several species of microalgae, closely related to mesophilic lineages, inhabit the extreme environment (pH 2.5, high levels of metals) of the Spain's Aguas Agrias Stream water (AASW). Consequently, AASW constitutes an interesting natural laboratory for analysis of adaptation by microalgae to extremely stressful conditions.

View Article and Find Full Text PDF