Publications by authors named "F Marty Ytreberg"

Killer toxins are proteinaceous antifungal molecules produced by yeasts, with activity against a wide range of human and plant pathogenic fungi. Fungus gardens of attine ants in Brazil were surveyed to determine the presence of killer toxin-producing yeasts and to define their antifungal activities and ecological importance. Our results indicate that up to 46% of yeasts isolated from specific fungal gardens can be killer yeasts, with an overall prevalence of 17% across all strains tested.

View Article and Find Full Text PDF

Antibody escape mutations pose a significant challenge to the effectiveness of vaccines and antibody-based therapies. The ability to predict these escape mutations with computer simulations would allow us to detect threats early and develop effective countermeasures, but a lack of large-scale experimental data has hampered the validation of these calculations. In this study, we evaluate the ability of the MD+FoldX molecular modeling method to predict escape mutations by leveraging a large deep mutational scanning dataset, focusing on the SARS-CoV-2 receptor binding domain.

View Article and Find Full Text PDF

Antibody escape mutations pose a significant challenge to the effectiveness of vaccines and antibody-based therapies. The ability to predict these escape mutations with computer simulations would allow us to detect threats early and develop effective countermeasures, but a lack of large-scale experimental data has hampered the validation of these calculations. In this study, we evaluate the ability of the MD+FoldX molecular modeling method to predict escape mutations by leveraging a large deep mutational scanning dataset, focusing on the SARS-CoV-2 receptor binding domain.

View Article and Find Full Text PDF

Background: Computational methods of predicting protein stability changes upon missense mutations are invaluable tools in high-throughput studies involving a large number of protein variants. However, they are limited by a wide variation in accuracy and difficulty of assessing prediction uncertainty. Using a popular computational tool, FoldX, we develop a statistical framework that quantifies the uncertainty of predicted changes in protein stability.

View Article and Find Full Text PDF

It has been 49 years since the last discovery of a new virus family in the model yeast Saccharomyces cerevisiae. A large-scale screen to determine the diversity of double-stranded RNA (dsRNA) viruses in S. cerevisiae has identified multiple novel viruses from the family Partitiviridae that have been previously shown to infect plants, fungi, protozoans, and insects.

View Article and Find Full Text PDF