Publications by authors named "F Martin-Garcia"

Background: Reverse total shoulder arthroplasty (RTSA) has recently become an option for the treatment of proximal humerus fractures (PHFs) or as a salvage procedure after failure of another treatment. The purpose of this study was to compare primary RTSA with delayed RTSA in the treatment of displaced PHFs.

Study Design & Methods: A retrospective cohort study was conducted on patients with PHFs who were treated between May 2013 and December 2021 with primary or delayed RTSA after failure of conservative treatment or osteosynthesis.

View Article and Find Full Text PDF

A reoccurring flaw of most yeast immobilization systems that limits the potential of the technique is leakage of the cells from the matrix. Leakage may be due to weakly adherent cells, deterioration of the matrix, or to new growth and loss of non-adherent daughter cells. Yeast biocapsules are a spontaneous, cost effective system of immobilization whereby cells are attached to the hyphae of , creating hollow spheres that allow recovery and reutilization.

View Article and Find Full Text PDF

Sotos syndrome is an overgrowth syndrome caused by mutations within the functional domains ofNSD1 gene coding for NSD1, a multidomain protein regulating chromatin structure and gene expression. In particular, PHDVC5HCHNSD1 tandem domain, composed by a classical (PHDV) and an atypical (C5HCH) plant homeo-domain (PHD) finger, is target of several pathological missense-mutations. PHDVC5HCHNSD1 is also crucial for NSD1-dependent transcriptional regulation and interacts with the C2HR domain of transcriptional repressor Nizp1 (C2HRNizp1)in vitro To get molecular insights into the mechanisms dictating the patho-physiological relevance of the PHD finger tandem domain, we solved its solution structure and provided a structural rationale for the effects of seven Sotos syndrome point-mutations.

View Article and Find Full Text PDF

The continued development and utility of molecular dynamics simulations requires improvements in both the physical models used (force fields) and in our ability to sample the Boltzmann distribution of these models. Recent developments in both areas have made available multi-microsecond simulations of two proteins, ubiquitin and Protein G, using a number of different force fields. Although these force fields mostly share a common mathematical form, they differ in their parameters and in the philosophy by which these were derived, and previous analyses showed varying levels of agreement with experimental NMR data.

View Article and Find Full Text PDF

FtsZ filaments participate in bacterial cell division, but it is still not clear how their dynamic polymerization and shape exert force on the underlying membrane. We present a theoretical description of individual filaments that incorporates information from molecular dynamic simulations. The structure of the crystallized Methanococcus jannaschii FtsZ dimer was used to model a FtsZ pentamer that showed a curvature and a twist.

View Article and Find Full Text PDF