Publications by authors named "F Marsh-Wakefield"

Background: HCC develops in the context of chronic inflammation; however, the opposing roles the immune system plays in both the development and control of tumors are not fully understood. Mapping immune cell interactions across the distinct tissue regions could provide greater insight into the role individual immune populations have within tumors.

Methods: A 39-parameter imaging mass cytometry panel was optimized with markers targeting immune cells, stromal cells, endothelial cells, hepatocytes, and tumor cells.

View Article and Find Full Text PDF

Background: Glioblastoma (GB) is a lethal and aggressive brain tumour. While molecular characteristics of GB is studied extensively, the aetiology of GB remains uncertain. The interest in exploring viruses as a potential contributor to the development of GB stems from the notion that viruses are known to play a key role in pathogenesis of other human cancers such as cervical cancer.

View Article and Find Full Text PDF

Aims: To investigate circulating angiogenic cells in adults with prediabetes and the effect of a structured exercise program.

Methods: A cohort of adults with overweight/obesity and either normal glucose (NG) or prediabetes were randomised to receive exercise (Exercise) (as twice weekly supervised combined high intensity aerobic exercise and progressive resistance training, and once weekly home-based aerobic exercise) or an unsupervised stretching intervention (Control) for 12 weeks. Circulating angiogenic T cells, muscle strength, and cardiovascular disease risk factors, including blood lipids, arterial stiffness, central haemodynamic responses, and cardiorespiratory fitness (VOpeak) in those with prediabetes (n = 35, 16 Control, 19 Exercise) and NG (n = 37, 17 Control, 20 Exercise) were analysed at baseline and after the 12-week intervention.

View Article and Find Full Text PDF

Advances in single-cell level analytical techniques, especially cytometric approaches, have led to profound innovation in biomedical research, particularly in the field of clinical immunology. This has resulted in an expansion of high-dimensional data, posing great challenges for comprehensive and unbiased analysis. Conventional manual analysis is thus becoming untenable to handle these challenges.

View Article and Find Full Text PDF

Advancements in cytometry technologies have enabled quantification of up to 50 proteins across millions of cells at single cell resolution. Analysis of cytometry data routinely involves tasks such as data integration, clustering, and dimensionality reduction. While numerous tools exist, many require extensive run times when processing large cytometry data containing millions of cells.

View Article and Find Full Text PDF