Publications by authors named "F Marian"

Background: Plant litter decomposition is a key process in carbon and nutrient cycling. Among the factors determining litter decomposition rates, the role of soil biota in the decomposition of different plant litter types and its modification by variations in climatic conditions is not well understood.

Methods: In this study, we used litterbags with different mesh sizes (45 µm, 1 mm and 4 mm) to investigate the effect of microorganisms and decomposer microarthropods on leaf and root litter decomposition along an altitudinal gradient of tropical montane rainforests in Ecuador.

View Article and Find Full Text PDF

Background: Artificial intelligence (AI) has the potential to personalize treatment strategies for patients with cancer. However, current methodological weaknesses could limit clinical impact. We identified common limitations and suggested potential solutions to facilitate translation of AI to breast cancer management.

View Article and Find Full Text PDF

In tropical forest ecosystems leaf litter from a large variety of species enters the decomposer system, however, the impact of leaf litter diversity on the abundance and activity of soil organisms during decomposition is little known. We investigated the effect of leaf litter diversity and identity on microbial functions and the abundance of microarthropods in Ecuadorian tropical montane rainforests. We used litterbags filled with leaves of six native tree species (, , , , , and spp.

View Article and Find Full Text PDF

We investigated how altitude affects the decomposition of leaf and root litter in the Andean tropical montane rainforest of southern Ecuador, that is, through changes in the litter quality between altitudes or other site-specific differences in microenvironmental conditions. Leaf litter from three abundant tree species and roots of different diameter from sites at 1,000, 2,000, and 3,000 m were placed in litterbags and incubated for 6, 12, 24, 36, and 48 months. Environmental conditions at the three altitudes and the sampling time were the main factors driving litter decomposition, while origin, and therefore quality of the litter, was of minor importance.

View Article and Find Full Text PDF

We investigated the role of leaf litter chemistry and richness in affecting testate amoeba communities of tropical rainforest in the Ecuadorian Andes. Litterbags containing leaf litter from four dominating tree species (Clusia sp., Myrcia pubescens, Graffenrieda emarginata, and Cecropia andina) with richness 1, 2, and 4 species were established and exposed in the field for 12 months at 2000 m a.

View Article and Find Full Text PDF